Disruption of the C. elegans Intestinal Brush Border by the Fungal Lectin CCL2 Phenocopies Dietary Lectin Toxicity in Mammals
نویسندگان
چکیده
Lectins are non-immunoglobulin carbohydrate-binding proteins without enzymatic activity towards the bound carbohydrates. Many lectins of e.g. plants or fungi have been suggested to act as toxins to defend the host against predators and parasites. We have previously shown that the Coprinopsis cinerea lectin 2 (CCL2), which binds to α1,3-fucosylated N-glycan cores, is toxic to Caenorhabditis elegans and results in developmental delay and premature death. In this study, we investigated the underlying toxicity phenotype at the cellular level by electron and confocal microscopy. We found that CCL2 directly binds to the intestinal apical surface and leads to a highly damaged brush border with loss of microvilli, actin filament depolymerization, and invaginations of the intestinal apical plasma membrane through gaps in the terminal web. We excluded several possible toxicity mechanisms such as internalization and pore-formation, suggesting that CCL2 acts directly on intestinal apical plasma membrane or glycocalyx proteins. A genetic screen for C. elegans mutants resistant to CCL2 generated over a dozen new alleles in bre 1, ger 1, and fut 1, three genes required for the synthesis of the sugar moiety recognized by CCL2. CCL2-induced intestinal brush border defects in C. elegans are similar to the damage observed previously in rats after feeding the dietary lectins wheat germ agglutinin or concanavalin A. The evolutionary conserved reaction of the brush border between mammals and nematodes might allow C. elegans to be exploited as model organism for the study of dietary lectin-induced intestinal pathology in mammals.
منابع مشابه
Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been...
متن کاملPlasticity of the b-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been...
متن کاملAnti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens.
The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins associated with the brush border. Chromatography on lactose-agarose was used to isolate such proteins, an...
متن کاملRat Intestinal Brush Border Membrane Peptidases
The properties of two purified peptidases derived from the intestinal brush border membrane of the rat have been investigated. The pH optima, heat stabilities, substrate specificities, and metal ion requirements of the two enzymes and the effects of inhibitors on their activities were nearly identical. The isoenzymes catalyzed the hydrolysis of a wide range of peptides containing from 2 to 8 am...
متن کاملEndocytic trafficking from the small intestinal brush border probed with FM dye.
The small intestinal brush border functions as the body's main portal for uptake of dietary nutrients and simultaneously acts as the largest permeability barrier against pathogens. To enable this, the digestive enzymes of the brush border are organized in lipid raft microdomains stabilized by cross-linking galectins and intelectin, but little is known about the dynamic properties of this highly...
متن کامل